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José Pineda de Gyvez, Fellow, IEEE

Abstract—Fully Depleted Silicon On Insulator (FDSOI) is
attractive for its low cost and low power; the mixed-Vt and body-
bias levers that it affords expand the performance-power solution
space. However, in FDSOI, different-Vt (i.e., low Vt, regular Vt)
devices must be isolated from each other, which makes realization
of fine-grained mixed-Vt / body-biasing in layout extremely
challenging. In this paper, we study heuristic methods aimed at
exploitation of fine-grained mixed-Vt in FDSOI implementation.
We propose a novel “speed domain partitioning” (SDP)
problem formulation that comprehends the spatial contiguity
restrictions arising from flip-well structure of low Vt regions
in popular 28nm commercial FDSOI offerings. We explore a
wide space of implementation flows that include an Integer
Linear Programming (ILP)-based approach, and a heuristic
(sensitivity-based) optimization. Our experimental studies have
been performed across multiple commercial enablements. We
observe that outcomes are library- and design-dependent. For
implementations using generic library options, up to 20% speed
improvement with 54% low Vt region is seen for one out of
four testcases studied. For implementations using “rich” library
options, up to 7% speed improvement with 26% low Vt region
is achieved. We provide a discussion that summarizes root-
cause, intrinsic difficulties of fine-grained exploitation of mixed-
Vt. Finally, we suggest a “decision tree” to help assess a design’s
amenability to fine-grained mixed-Vt implementation, and to help
guide design flow selection for better design QoR.

Index Terms—FDSOI, sizing, placement, co-optimization,
mixed-Vt, body-bias

I. INTRODUCTION

Fully Depleted Silicon On Insulator (FDSOI) is a promising

process technology especially for low power IoT designs due

to its low-cost and low-power potential. Particularly, contrary

to the FinFET process in which body bias is inefficient,

body bias in FDSOI is a good knob for speed and leakage

optimization. At a 0.5V supply, speed can be improved by

up to 5.5× by using forward body bias (FBB), and leakage

power can be reduced by up to 50× by using reversed body

bias (RBB) [6].

Due to the unique FDSOI device structure that does

not have body, regular Vt (LR) and low Vt (LL) devices

are implemented by a special structure called a flip well
configuration.1 Figure 1 shows the structures of a conventional

H. Fatemi is with NXP Semiconductors, San Jose, CA 95134, USA. J.
Pineda de Gyvez is with NXP Semiconductors, Eindhoven, The Netherlands.
(email: {hamed.fatemi, jose.pineda.de.gyvez}@nxp.com) A. B. Kahng and H.
Lee are with the University of California at San Diego, La Jolla, CA 92093,
USA (email: {abk, hyeinlee}@ucsd.edu).

1The names LL and LR map to nomenclature such as LVT/SLVT or
HVT/RVT used in popular foundry technologies. In this paper, we generically
use LL/LR to avoid the use of any foundry-specific names.

well (LR) and a flip well (LL). In the flip well structure, an

N-well is implemented under the NMOS transistor, and a P-

well is implemented under the PMOS transistor; this structure

enables a wide range of forward body bias [8]. However, as

the wells are flipped, abutting LL and LR cells induces a well

bias conflict. Thus, LL and LR cells must be isolated from

each other.2

Successful implementations of mixed-Vt and body bias

in FDSOI are well-documented in several previous works

[3][6][8]. In these works, the Vt and body bias are assigned in

a coarse-grained, i.e., block-level, manner due to the constraint

that different-Vt cells cannot be abutted. To complement these

previous works, and to ensure that the Vt and body bias options

in FDSOI are fully exploited, fine-grained implementations

should also be considered and evaluated. However, it is

not straightforward to estimate the benefits of fine-grained

mixed-Vt and body bias implementation due to the placement

constraints for different-Vt options. Indeed, our present work

shows that in the FDSOI context, benefits realized from fine-

grained use of Vt (hence, body bias) options appear strongly

dependent on designs, libraries, performance targets and power

requirements. For example, our results and discussion below

suggest that realizable benefits depend on (i) availability of

rich cell library options that offer power-delay tradeoff, such

as poly-biasing options; (ii) the optimized timing structure

produced by traditional physical implementations, including

aspects such as multiplicity of timing-critical paths (“wall of

slack”) and the spatial distribution of critical instances; and

(iii) a given design’s sensitivity to active leakage and dynamic

power.
In this work, we study the potential of fine-grained, i.e.,

subblock-level, mixed-Vt assignment in FDSOI. We frame

our study using a novel speed domain partitioning (SDP)

problem formulation, since the Vt assignment essentially seeks

to partition the input block into fast and slow parts. Note

that in the following, we focus on the challenge of fine-

grained mixed-Vt assignment in FDSOI, and we discuss only

briefly in Section V the (more difficult) challenge of fine-

grained body bias assignment. Both of these challenges share

the fundamental problem of determining rectilinear layout

regions for speed boost, i.e., performance improvement, with

2There exist some foundry technologies which offer different Vt with the
same well structure (e.g., 22FDX from Global Foundries [21]), enabling
different-Vt devices to be mixed freely. However, in this paper, we refer to
“mixing different well structures” as mixed-Vt: we study the regime where
different Vts are generated by using different well structures. Specifically, LL
(resp. LR) is formed by a flip (resp. conventional) well. This corresponds to
widely-used 28nm commercial offerings.
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minimum power increase. Moreover, the mixed-Vt assignment

problem that we study can be seen as closely related to body

bias assignment - e.g., FBB assignment can be comprehended

by adding more timing constraints for the FBB mode.
Our main contributions are summarized as follows.

• We formulate the SDP problem and develop two basic

optimization flows to address the SDP problem: an ILP-

based flow, and a sensitivity function-based heuristic flow.

• We experimentally study the potential benefits of fine-

grained mixed-Vt in FDSOI. Up to 20% (resp. 7%)

speed improvement with 54% (resp. 26%) LL region area

is achieved for an example with generic (resp. “rich”)

cell library. This said, we observe that outcomes are

highly dependent on available library cells as well as

characteristics of the input designs.

• We analyze root-cause challenges to fine-grained mixed-

Vt exploitation in FDSOI. Specifically, we identify three

intrinsic difficulties: (i) availability of rich library cell

options; (ii) the existence of a “slack wall” in well-

optimized designs; and (iii) spatial contiguity constraints

on the placement.

• We suggest a decision tree to help assess the potential

benefits for a given design of using mixed-Vt in FDSOI.

• Finally, we briefly explain fundamental difficulties of

post-placement fine-grained body-biasing that we have

encountered in our experimental investigations. Future

research can potentially revisit these challenges by

exploring improved implementation flows for fine-grained

body-biasing, e.g., that apply pre-placement netlist

optimizations and useful skew.

The remainder of this paper is organized as follows.

Section II reviews related works. Section III describes our

approaches for island generation. In Section IV, we describe

our experimental setup and results. In Section V, based

on our experimental results, we give analyses of inherent

difficulties of exploiting fine-grained mixed-Vt in FDSOI.

Section VI gives conclusions along with a brief discussion

on the difficulties of fine-grained body-biasing in FDSOI, and

directions for future work.

(a) Device structure. (b) Well conflict.

Fig. 1: (a) The FDSOI device structure. (b) The LL and LR

cells cannot be abutted due to well bias conflicts [6].

II. RELATED WORKS

We now review related works. To the best of our knowledge,

there are not many works that directly address fine-grained

mixed-Vt and body biasing in FDSOI. Thus, along with fine-

grained body bias work, we review previous works in multiple-

Vdd (voltage island) placement as well as multiple-height cell

placement. The three problems have similarity in that cells are

assigned to certain attributes, with consideration of placement

constraints, to optimize design speed and power.

Island generation for dual Vdds. A post-placement Vdd

assignment flow to minimize the number of level converters is

proposed in [7]. Sensitivity-based Vdd assignment is followed

by placement optimization based on soft clustering using a

min-cut placer to generate voltage islands with a reduced

number of level converters. Liu et al. [11] propose a voltage

island generation method in placement for dual-Vdd designs.

The proposed flow starts with power- and timing-driven

placement. Sensitivity-based voltage assignment is performed

followed by partition-based placement refinement with soft

clustering of the same Vdd cells. During the placement

refinement stage, neighboring bins are merged to create a

new larger bin, and this new bin is repartitioned considering

wirelength and clustering for voltage isolation. This process is

performed iteratively until all the same-Vdd cells are clustered.

Island generation for multiple Vdds. Wu et al. [14] propose

a dynamic programming-based methodology to group voltage

islands for designs with multiple supply voltages. The voltage

island grouping problem is formulated as follows. Given a

set of minimum Vdd assignment vg for each grid g, and

an error threshold δ, find a partitioning with the smallest

size (i.e., number of islands) where each island has an

error of at most δ. The error of an island I is defined as

∑g∈I (vmax− vg), where vmax =maxg∈Ivg. The heuristic method

in [14] has two steps: (i) size reduction to a p× q array G
where each grid has an error less than δ so that the array

is manageable by dynamic programming-based approach, and

(ii) applying dynamic programming to G. In the work of

[12], a greedy heuristic approach for rectangular voltage island

generation is proposed for multiple-Vdd designs. The largest

rectangular regions with the minimum resulting power are

selected iteratively for a given placement along with grid-based

voltage assignment.

Row-based dual Vdds. Yeh et al. propose cell layout

techniques along with a simulated annealing-based placement

algorithm that support row-based dual-Vdd designs [17]. The

authors of [15] propose an improved placement algorithm

that handles local clock buffers for the row-based dual-

Vdd designs. The proposed flow consists of two stages:

(i) clustering gates to form voltage islands, and (ii) linear

programming-based legalization. In the work, latches are

grouped based on maximum weighted matching. Then, gates

are again clustered based on their distance-based weights,

followed by min-cost max flow-based level shifter assignment.

The authors of [16] propose an extension of [15] that improves

timing by moving gates for the row-based dual-Vdd designs.

The proposed flow moves timing-critical gates to feasible

locations in a greedy manner, without changing voltage

assignments.

Mixed-height cell placements. The work of [5] proposes a

placement optimization flow to implement a fine-grained non-
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integer multiple-height cell placement. dynamic programming-

based partitioning is followed by sensitivity-based gate sizing

and placement optimization in the proposed flow.

Other fine-grained body bias work. Flores [2] proposes a

greedy algorithm that determines a body bias island floorplan

that gives minimum wirelength. In the proposed algorithm,

the size and location of the islands are selected based on track

utilization. Taco et al. [13] study gate-level dynamic body

biasing in 28nm FDSOI in the circuit level. The authors of [13]

compare the dynamic threshold voltage MOSFET (metal-oxide

semiconductor field-effect transistor) circuit (transistor-level

body biasing) and the gate-level body-biased circuit [1][4].

Kühn et al. [10] propose a body bias domain partitioning

method by identifying gates activated through a common

identifier during logic synthesis. The authors of [10] assign

body bias to partitioned domains based on leakage and timing.

In sum, previous works have addressed design optimizations

in contexts – notably, voltage island and mixed-height

placement – that are similar to our present FDSOI context.

Many of these other works report noteworthy power/speed/area

benefits from their proposed optimizations. However, as

seen from our experimental results as well as the Section

V discussion below, the SDP problem in FDSOI seems

fundamentally more challenging for several reasons.

III. PROBLEM STATEMENT AND OUR APPROACHES

In this section, we first formulate the SDP problem for

mixed-Vt FDSOI implementation. We then describe a set of

implementation approaches we have tried, and give details of

the two best approaches that empirically give maximum speed

improvements (for given power overhead) subject to placement

constraints.

It must be emphasized that there are many conceivable

ways to implement fine-grained mixed-Vt (and body bias)

implementations, working at various design levels in the RTL-

to-GDS flow. For example, one could plausibly synthesize with

both Vts and partition the netlist according to the Vt of each

gate. Or, one could synthesize with LR-only and optimize the

netlist while making LL cells additionally available. Among

many possible implementation flows that we have investigated,

our discussion focuses on post-placement optimizations in

which we start from placed netlists implemented with LR-only
cells, without awareness of placement constraints in FDSOI.

We have zeroed in on this space of implementation flows, for

the following reasons. First, it is difficult to identify timing-

critical cells that will eventually require speed boost, based on

a pre-placement netlist – since the timing changes disruptively

after placement. Second, if we predetermine (LL) regions for

speed boost, this restricts placement and leads to poor quality

of placement results with respect to timing and wirelength.

Third, if we allow the mixing of LL/LR Vt values up front

in synthesis, the optimization of LL vs. LR regions becomes

highly restricted by existing (placements of) LL cells; in

our experience, this leads to very large timing and/or power

penalties.

Mixed-Vt Speed Domain Partitioning (“SDP-MVT”)
Problem. Given an initial placed design implemented with

LR cells only, perform Vt swapping, sizing and placement

optimization to define LL regions under timing/placement

constraints.

Input: A placed design, synthesized and optimized with LR

cells.

Output: An optimized mixed-Vt netlist/placement, with LL

islands.

Constraints: The optimization would typically be subject to

timing and placement constraints. For example, the target

operating frequency of the mixed-Vt implementation should

be X% higher than that of the pure-LR implementation; the

total power of the mixed-Vt implementation should be no more

than Y% higher than that of the pure-LR implementation; and

the total area of LL regions should be no more than Z% of

the total area of the design. Our experiments below attempt to

shed light on achievable combinations of X, Y and Z for the

testcases studied.

A. Overall Flow

Figure 2 illustrates our overall flow. The input to the

overall flow is a placement implemented and optimized

with LR cells only. We generate LL islands and assign LL

to all the cells in the islands. We then further optimize

timing if needed without changing the LL assignment. The

output is an optimized placement (and netlist) with LR

and LL cells. Our background experiments have tried a

rather large number (i.e., 4× 5 = 20) of flow variants with

various combinations of island generation methods and timing

optimization methods. Additionally, various alternative ILP-

based assignment strategies have been tested.

Fig. 2: Overall flow, showing options explored in background

studies. Superior flow options are shown in bold font.

For the island generation, we have tried four flows,

namely, (A) a “brute-force” approach [2]; (B) sensitivity-

based assignment; (C) ILP-based assignment; and (D) iterative

heuristic-based assignment. In the brute-force approach, we

first collect all the timing-critical cells in a given placement,

and move these cells into a predefined rectangular region.

We sweep the locations and aspect ratios of the predefined

region to find a best solution; thus, the brute-force method is
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similar to executing the method of [2] with many different

target regions. The sensitivity-based assignment is performed

as follows, with respect to a coarse gridding of the layout

region into (∼100) grids. First, for each cell in the layout, we

calculate the sensitivity (1/Δ total negative slack) when the LR

cell is changed to LL. We then select the top-k% of all cells

with respect to the sensitivity. Among the selected cells, we

randomly choose n cells to use as seeds for the LL region

generation. (Since LL regions must be contiguous in the final

layout solution, succeeding LL cells should be close to these

seed LL cells.) Using the chosen n cells as “anchors”, we

recalculate the sensitivity of each cell considering proximity,

i.e., the quotient (distance to the nearest anchor / Δ total

negative slack). We then sum all of the cell sensitivity values

in each grid. Finally, we assign LL to the regions (grids) with

the largest sums of sensitivity values.

In our experiments, Flows (A) and (B) in Figure 2 do not

offer noticeable speed improvement. For Flow (A), we observe

that forcing timing-critical cells to be placed in predefined

LL (fast) regions is too disruptive to timing-driven placement.

For example, critical cells could be placed far apart from

their non-critical fanin/fanout cells, which results in excessive

increase of wirelength (and wire capacitance). In such cases,

new timing-critical paths occur in LR (slow) regions. Indeed,

in our optimization results, none of the data points shows speed

improvement as compared to the initial LR placements.

For Flow (B), although the LL regions are predefined with

an understanding of the initial placement through sensitivity,

the issue of creation of new timing-critical paths still exists.

Timing-critical cells that are assigned to LL, but that are not

in the LL regions, must be moved to nearest LL regions. This

is again disruptive to the existing timing-/wirelength-driven

placements. Also, since the sensitivity is calculated under the

assumption that one cell is swapped while all the other cells are

fixed, it does not show the whole picture. This is the motivation

of our iterative heuristic-based assignment where we update

timing after each step of gradual LL region assignment, so as

to maintain more accurate timing.

For the timing optimization, we have tried five flows,

namely, (1) no optimization; (2) commercial tool-based

optimization for the entire placement; (3) commercial tool-

based optimization for islands where we run post-placement

optimization for the LL regions only; (4) sensitivity-based

gate sizing and movement for the entire placement; and (5)

sensitivity-based gate sizing and movement for the LL regions

only. For the sensitivity-based gate sizing (4) and (5), we

estimate Δ slack for each potential move and swap. Δ slack /

current slack is used as our sensitivity function.

Table I shows the results of the timing optimization flows

applied to M0 designs obtained by the island generation Flow

(D). The table reports the minimum achievable clock period,

and the corresponding leakage and total power. No single

timing optimization shows good power-delay tradeoff. E.g.,

Flow (2) shows 35% and 11% more leakage and total power

while only achieving 3% delay benefit, compared to Flow (1).

This is because the (post-placement) timing optimization is

limited to sizing-only due to the placement-induced constraint

where Vt is fixed according to locations. The sizing-only

TABLE I: Timing optimization results.

Flow Clock Period PLeak PTot
(1) 1.000 1.482 9.94

(2) 0.969 (3%) 1.998 (35%) 11.00 (11%)

(3) 0.986 (1%) 2.010 (36%) 10.97 (10%)

(4) 0.998 (0%) 1.834 (24%) 10.70 (8%)

(5) 1.000 (0%) 1.482 (0%) 10.02 (1%)

optimization may be further limited by placement if only a

limited number of empty sites are available for timing-critical

cells that need upsizing.

From our experimental studies, we have concluded that

ILP-based assignment and iterative heuristic-based assignment

offer clearly superior results in terms of speed improvement

for given placement constraints and power overhead. For

timing optimization, none of the methods studied is helpful

to improve worst setup slack. In sum, the best overall flows

that we select for our experiments below are designated in

bold font in Figure 2.

B. Algorithms for Island Generation

We now give details of the two approaches for island

generation that offer the best results in our experiments. In our

island generation flows, we perform grid-based assignment,

i.e., all the cells in the same grid have the same Vt. Thus,

island generation first splits the layout into a number of

uniform rectangular grids. Empirically, the results of our flows

are not sensitive to the number of grids when this number is

100 or more. Thus, in the following we report results for 100

uniform rectangular grids.

TABLE II: Notations.

Notation Meaning
α LL island area constraint (0 – 1)

N maximum number of islands

i / j / m / n index of cell / LL island / timing path / grid, respectively

v jn binary indicator of whether grid n belongs to island j
v j binary indicator of whether island j is generated
gi grid index of cell i

Δdi delay difference between LR and LL for cell i
LR cell delay subtracted by LL cell delay.

dm initial delay of path m
CP clock period

max area maximum area constraint for islands

x jl , y
j
l (resp. x ju, y

j
u) x, y locations of lower-left (resp. upper-right) corner of island j

xnl , y
n
l (resp. xnu, y

n
u) x, y locations of lower-left (resp. upper-right) corner of grid n

xl , yl (resp. xu, yu) x, y locations of lower-left (resp. upper-right) corner of the layout

G large number

1) ILP-Based Flow: In our ILP-based flow, we first collect

timing critical paths and formulate timing constraints. Table II

shows the notations used in our ILP formulation. The objective

is to minimize the clock period CP (Constraint (1)). CP
is bounded by the maximum path delay in Constraint (5).

Constraint (2) ensures that total area of islands is not more than

a given maximum area. The area of a rectangle is estimated

by its half-perimeter. Constraint (3) ensures that at most one

island j is selected for a grid n. For each grid n, the sum of

v jn must be equal or less than one. Constraint (4) ensures that

the number of islands does not exceed N. The v j is forced to

be one if v jn = 1 for any n. When ∑n v
j
n = 0, which means no
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single v jn = 1 exists, v j is forced to be zero. The number of

islands is counted by ∑ j v j, and this must be less than or equal

to N. Constraint (5) ensures the clock period CP to be larger

than the new path delay that is computed considering the delay

improvement of swapping to LL. Constraint (6) determines the

dimension of islands such that every LL grid is covered by LL

islands.

Minimize: CP (1)

Subject to:

∑
j
(x ju− x jl + y ju− y jl )< α · (xu− xl + yu− yl)

(2)

∑
j
v jn ≤ 1, ∀n (3)

v j ≥ v jn, ∀n; v j ≤ ∑
n
v jn; ∑

j
v j ≤ N (4)

dm− ∑
i∈pathm

(∑
j
v jgi) ·Δdi <CP, ∀m (5)

x ju−Gvjn+G> xnu, ∀ j
x jl +Gvjn−G< xnl , ∀ j
y ju−Gvjn+G> ynu, ∀ j
y jl +Gvjn−G< ynl , ∀ j (6)

2) Iterative Heuristic Flow: Algorithm 1 shows our

iterative, sensitivity function-based heuristic flow for LL island

generation. We select LL island regions based on sensitivity,

where the average slack of the region is used as the sensitivity

function (SF). The island regions are comprised of contiguous

grids. In Line 1, we find a small rectangular region based

on sensitivity, and use this as a seed for generating island

regions. In Lines 2 – 13, we grow the seed gradually until

the area of the region reaches a given max area constraint.

More specifically, for each direction (Line 3), we try growing

the seed region by one grid (Line 4) and calculate SF (Line

5). We select the best direction to grow, which gives the best

(minimum) SF score (Line 7).

IV. EXPERIMENTAL RESULTS

In this section, we report the results of our two best flows

that we describe in Section III. For each of our testcases, we

perform three distinct optimizations to find rectilinear regions

for the mixed-Vt problem: (i) ILP with one island (ILP-1);
(ii) Iterative ILP with two islands (ILP-2); and (iii) Heuristic

with two islands (Heur). The Iterative ILP simply defines a

first LL island based on the above-described ILP, and then –

based on this LL assignment – sets up and solves the same

ILP with updated timing information to define a second LL

island. Our methods are implemented in Tcl 8.4 [26], and

CPLEX v12.6.3 [22] is used as the ILP solver. Runtimes for

each solution, including runtimes of commercial tool steps and

any CPLEX runtimes, are at most 6 hours on a 2.8GHz Xeon

server with 128GB RAM.

Algorithm 1 Sensitivity function-based heuristic flow.

Procedure: HeurVtAssign()
Input: placement, max area

Output: placement with LL islands

1: region ← FindBestRegion(area=0.01, SF)

2: while area < max area do
3: for direction in (east, west, north, south) do
4: grow region ← grow(region, direction)

5: score ← CalcSF(grow region, SF)

6: if best score < score then
7: region ← grow region

8: best score ← score

9: end if
10: end for
11: area ← region.area

12: update timing

13: end while
14: return region

A. Experimental Setup

We perform experiments in a 28nm FDSOI foundry

technology with dual-VT libraries, 0.9V nominal supply

voltage. We validate our flows with ARM Cortex M0 and

M3 cores, along with two designs (ldpc, viterbi) from the

OpenCores website [23].

The designs are synthesized with target periods in the range

of 0.5ns – 2.5ns, with a 50ps step. For each synthesized

netlist, P&R is performed with three P&R target periods,

i.e., synthesis target period + {-50, 0, 50}ps. The SP&R

(synthesis and P&R) is performed with three library options,

i.e., LR-only, LL-only and LR+LL (mixed-Vt), without

placement constraints. For the P&R flow, high leakage power

optimization effort is applied, along with post-placement

leakage optimization. For each SP&R implementation, we

record effective clock period (ECP), which we calculate as

the target period subtracted by worst setup slack, along with

leakage power and total power. (Assuming a simple single

clock constraint, worst setup slack plus the target clock period

is equal to the smallest clock period at which setup slack =

0.)

We have performed our experiments with multiple

commercial 28nm FDSOI enablements, one with 12-track

(12T) cells and a “generic” (no poly bias) library, and the

other with 8-track cells and a “rich” library with poly biases.3

• Enable1. 28nm 12T LL and LR without poly bias (i.e.,

P0) are used as library cells. Synopsys Design Compiler

N-2017.09 [24] and Cadence Innovus v17.1 [19] are used

for logic synthesis and P&R tools, respectively.

• Enable2. 28nm 8T LL and LR with four poly bias

options (i.e., P0, P4, P10 and P16) are used as library

cells. Cadence Genus v16.2 [20] and Cadence Innovus

3Poly biasing refers to transistor gate (channel) length biasing, typically by
a positive number of nanometers, for ultra fine-grain exploitation of leakage-
delay tradeoff. For example, P10 denotes a +10nm (relative to the nominal
value) channel length.
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TABLE III: Testcases.

Enable Name #Instances Min. LL period Min. LR period

Enable1

M0 7K∼11K 0.803 1.102

ldpc 46K∼59K 0.775 1.027

M3 47K∼60K 1.151 1.577

viterbi 53K∼69K 0.529 0.755

Enable2
M0-2 8∼13K 0.834 1.144

M3-2 47∼71K 1.248 1.669

v15.2 [19] are used for logic synthesis and P&R tools,

respectively.4

We have implemented the M0 and M3 testcases with each of

these two enablements. We denote M0 (resp. M3) implemented

with Enable2 as M0-2 (resp. M3-2).

Table III shows the testcase information. All the numbers

are reported by the P&R tools that correspond to the

associated enablements (i.e., Innovus v17.1 and v15.2 for

Enable1 and Enable2, respectively), at the post-placement

stage. The Min. LL period and Min. LR period columns

show the minimum achievable effective period with LL-

only and LR-only SP&R implementation, respectively. We

observe that roughly 30∼40% speedup can be achieved

with LL-only implementations (i.e., 100% LL), compared to

LR-only implementations. This can be viewed as an upper

bound on speedup that could be achieved by any mixed-Vt

implementation.

B. Experimental Results

Recall that we perform three optimizations, i.e., ILP-

1, ILP-2 and Heur, on LR-only implementations to find

rectilinear regions for mixed-Vt FDSOI implementation. To

obtain meaningful inputs to our optimization flows, we select

several LR-only implementations with effective clock periods

no more than 1.1 × Min. LR period. We run our optimizations

with maximum LL% constraints of {20%, 30%, 40%, 50%}.
We then report the results with minimum leakage power

while meeting {2%, 5%, 7%, 10%, 20%} speed improvements

compared to Min. LR period.
Table IV shows the results of our three heuristics

for mixed-Vt optimization (ILP-1, ILP-2, Heur), along

with three reference implementations: the LR-only (LR)
baseline implementation, the LL-only (LL) fastest-possible

implementation, and the mixed-Vt (without placement

constraints) (LR+LL) implementation that bounds the mixed-

Vt power-speed tradeoff. In each group of columns of the

table, we report parameters (ECP, leakage (PLeak) and total

power (PTot), and percentage area of LL region(s)) of the

lowest-power solution that achieves the given percentage speed

improvement, relative to the LR baseline implementation. We

also report leakage and total power reduction in percentages

as compared to LL in parenthesis in Columns PLeak and

PTot. The best flow in terms of power values for each

design is highlighted in bold font. Blanks (indicated by ’-

’) mean that there is no result that meets the corresponding

4These particular tool versions were the only (latest) available tools for each
enablement when the experiments were executed. The location of testcase data
dictated the enablement used for given experiments.

speed improvement with the corresponding flow. We note that

our target periods are based on Min. LR period which are

aggressive, and that the upper bound of the possible speedup

is only 30∼40%. We also note that we do not include the

implementation overhead due to the spacing rules between LL

and LR. In reality, mixed-Vt implementations with placement

constraints will have more area and thus consume larger total

power.
Figure 4 shows the leakage and total power versus the

effective clock periods for the four designs implemented with

Enable1, and for the two designs implemented with Enable2.

Figure 3 shows the island shape obtained by ILP-2 for the

viterbi testcase in Enable1. This obtains a speedup of 20%

with LL region area of 54%.

Fig. 3: Island shape obtained by ILP-2 for the viterbi testcase

in Enable1. LL regions are highlighted in red.

Our high-level findings are summarized as follows.

• The overall outcomes, i.e., power and speed benefits from

mixed-Vt, are strongly library- and design-dependent.

• For Enable1 (generic library)-based designs, up to 20%

speed improvement with 54% LL region is observed.

• For Enable2 (rich library)-based designs, up to 7% speed

improvement with 26% LL region is observed.

Designs without rich library cells (Enable1). For the

designs implemented with Enable1, we observe that M0 and

viterbi achieve 20% speedup with ILP-based optimizations.

For M0, ILP-1 achieves the 20% speedup with 53% LL area.

Compared to LR+LL (without placement constraints) in the

ILP-1 solution, leakage and total power values are 48% and

18% larger while the LL area is the same. For viterbi, ILP-
1 and ILP-2 achieve the 20% speedup with 60% and 54%

of LL area, respectively. Compared to LR+LL, in the ILP-2

solution, leakage power value is 69% larger, but total power

value is 1% smaller, while LL area is 25% larger. For ldpc,
ILP-2 achieves the 7% speedup target with 53% of LL area.
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Compared to LR+LL, in the ILP-2 solution, leakage and total

power values are 101% and 20% larger, respectively, while LL

area is 3% smaller.

We see that ldpc is not a SDP-friendly design, since the LL

portion in LL+LR is higher compared to other designs. Even

without placement constraints, ∼ 77% of area is needed to

achieve the 20% speedup requirement. For M3, ILP-2 achieves

the 7% speedup with 53% LL area. Compared to LR+LL,
in the ILP-2 solution, leakage and total power values are

216% and 119% larger, while LL area is 35% larger. We

believe that there are at least two reasons for not achieving

≥ 10% for M3. First, since M3 has a relatively larger initial

effective clock period compared to other testcases, it is more

challenging to achieve a higher % of speedup. In particular,

worst setup slack must be improved by more than 250ps for

the 20% speedup target, while other designs can meet such a

speedup goal with less than 200ps worst setup slack gain.

Second, the placement seems to not be SDP-friendly. The

required LL area values to achieve 7% speedup target without

and with placement constraints are 18% and 53% respectively,

and there is a very large gap (i.e., 35% difference in LL area)

between these two cases. This indicates that critical cells are

indeed placed sparsely (that is, without any spatial contiguity

awareness in physical synthesis or sizing steps) by commercial

implementation flows, and that it is not easy to cover the

critical cells with only a couple of rectangular LL regions.

In Figures 4(a)-(h), we observe that Heur, ILP-1 and ILP-2

curves are between the LL and the LR+LL curves, but closer to

the LR+LL curves. However, for faster effective clock periods

(i.e., less than the minimum clock period achievable in pure-

LR designs), the power values of the Heur, ILP-1 and ILP-

2 increase dramatically. We note that the LR+LL results are

obtained without considering placement constraints while the

Heur, ILP-1 and ILP2 consider the placement constraints. The

unnecessary cell swap to LL due to the placement constraints

leads to large power increase.

Designs with rich library cells (Enable2). For the designs

implemented with Enable2, we observe that up to 7% and

2% speed improvement is achieved for M0-2 and M3-2,
respectively. In Figures 4(i)-(l), we see that for designs with

Enable2, as noted in Section V-A, the benefit of mixed Vt

is relatively less. As expected, the Heur results do not show

much power benefit (or a reduction) in comparisons are made

at same effective clock period values (i.e., iso-effective clock

period).

V. ON THE DIFFICULTY OF THE SDP PROBLEM

From our experimental results above, we see that the benefit

of fine-grained mixed-Vt can be disappointingly small for

FDSOI implementations. In this section, we present what we

believe to be root-cause, intrinsic reasons behind the difficulty

of obtaining larger benefits from fine-grained mixed-Vt in

FDSOI. These reasons stem from the nature of popular 28nm

FDSOI foundry technologies, as well as the input designs

(netlist and placement), that we study. All of these reasons

also apply to fine-grained body biasing in FDSOI.

In this section, our discussion is supported by experimental

results obtained through limited access to another commercial

enablement, which we refer to as Enable3. For Enable3, 22nm
8T LL and LR that have six cell variants respectively are used

as library cells. Synopsys Design Compiler N-2017.09 [24]

and Cadence Innovus v17.1 [19] are used for logic synthesis

and P&R tools, respectively.

A. Rich Library Cell Options

We observe that the nature of foundry libraries can affect

available mixed-Vt benefit. More specifically, if the foundry

libraries offer rich cell library options that can be mixed

without conflicts in the layout, the use of mixed Vt (which

is restricted by placement constraint) would not give much

benefit over single-Vt implementation.

Different poly bias options are an example. These options

in the same-well-structure group that can be mixed in the

layout without placement constraints, and they offer power-

delay tradeoff wide enough to replace different well structure

groups. The Enable2 28nm FDSOI foundry enablement offers

four poly bias options (P0, P4, P10 and P16) for each group

of LL and LR. Similarly, the libraries in Enable3 offer six

different cell options for each of LL and LR.

We have two experiments (1) delay-power tradeoff of

individual library cells and (2) delay-power tradeoff of design

implementation to study the impact of the availability of rich

cell library options on the benefit of mixed Vt.

Study of individual cell delays. Figure 5 shows leakage-vs.-

delay curves for different sizes of buffer cells for each Vt/poly

bias option. The delay value of each cell is calculated using

the lookup table in the non-linear delay model (NLDM) library

with input slew 50ps and load of 4× the input capacitance

of each cell. The average leakage power and the delay of

each cell respectively correspond to the y-axis and the x-

axis in the figure. We observe that the power-delay curves

of LL and LR expand with the availability of more poly

bias options, such that these curves have greater overlap and

become more “near-continuous”, with near-minimum power

being achievable for a particular operating frequency without
mixing LL and LR. Accordingly, the benefit of mixed-Vt is

less likely to justify the overheads from placement constraints.

(This might be in contrast to multi-Vdd or mixed-height

placement contexts, where delay-power tradeoff curves remain

disjoint and mixing of flavors retains benefits.) Further, a

reversed leakage trend is seen, i.e., leakage power of LL P16

and LL P10 is lower than that of LR P4 and LR P0 with iso-

delay, in the zoomed-in region. With the availability of rich

poly bias options, the benefit of fine-grained mixed-Vt might

not be sufficient, let alone compelling, compared to “mixed

poly bias” implementations.

Study of design implementations. Our experimental studies

confirm that with rich cell library options, mixing of LL

and LR might achieve only limited benefits. For example,

Figure 6 shows the power and delay tradeoff of different

M3 implementations with different library cells, i.e., LL, LR,

LR+LL (mixed-Vt) with Enable1, Enable2 and Enable3. Each

dot corresponds to a distinct SP&R implementation with a

target period. The x-axis shows the ECP in ns. Leakage or total

power values are shown in the y-axis. We note that Enable1 is
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TABLE IV: Results of ILP-1, ILP-2 and Heur.

Design Flow 2% imprv 5% imprv 7% imprv 10% imprv 20% imprv
ECP PLeak PTot LL% ECP PLeak PTot LL% ECP PLeak PTot LL% ECP PLeak PTot LL% ECP PLeak PTot LL%

M0

LR 1.102 0.17 8.09 0 - - - - - - - - - - - - - - - -

LL 1.059 1.15 7.42 100 1.008 1.24 7.96 100 1.008 1.24 7.96 100 0.996 1.31 8.57 100 0.917 1.49 9.59 100

LR+LL 1.07 0.55(52%) 7.05(5%) 31 1.025 0.69(44%) 7.76(3%) 39 1.025 0.69(44%) 7.76(3%) 39 0.947 0.78(40%) 8.23(4%) 41 0.911 1.02(32%) 9.25(4%) 53

ILP-1 1.053 0.39(66%) 8.14(-10%) 15 1.042 0.91(27%) 9.11(-14%) 30 1.007 1.05(15%) 9.28(-17%) 41 0.992 1.27(3%) 9.66(-13%) 52 0.915 1.51(-1%) 10.95(-14%) 53

ILP-2 1.046 0.59(49%) 8.51(-15%) 19 1.046 0.59(52%) 8.51(-7%) 19 0.99 1.07(14%) 9.53(-20%) 40 0.99 1.07(18%) 9.53(-11%) 40 - - - -

Heur 1.045 0.45(61%) 8.25(-11%) 17 1.045 0.45(64%) 8.25(-4%) 17 1.027 1.13(9%) 9.47(-19%) 44 1 1.48(-13%) 10.02(-17%) 54 - - - -

ldpc

LR 1.027 1.17 79.44 0 - - - - - - - - - - - - - - - -

LL 0.972 7.58 89.37 100 0.972 7.58 89.37 100 0.941 8.49 91.21 100 0.916 8.75 86.74 100 0.82 12.41 108.42 100

LR+LL 0.962 4.55(40%) 78.07(13%) 50 0.962 4.55(40%) 78.07(13%) 50 0.909 5.63(34%) 86.05(6%) 56 0.909 5.63(36%) 86.05(1%) 56 0.817 10.06(19%) 104.42(4%) 77

ILP-1 1.003 5.51(27%) 85.49(4%) 22 0.977 11.31(-49%) 97.12(-9%) 53 - - - - - - - - - - - -

ILP-2 0.996 4.14(45%) 84.53(5%) 16 0.967 9.13(-20%) 93.2(-4%) 43 0.954 11.32(-33%) 102.89(-13%) 53 - - - - - - - -

Heur 1.004 7.24(4%) 88.39(1%) 40 - - - - - - - - - - - - - - - -

M3

LR 1.577 0.75 29.87 0 - - - - - - - - - - - - - - - -

LL 1.479 6.53 36.1 100 1.479 6.53 36.1 100 1.403 7.08 38.88 100 1.403 7.08 38.88 100 1.295 8.03 43.83 100

LR+LL 1.506 2.05(69%) 31.88(12%) 18 1.457 2.19(66%) 33.81(6%) 18 1.457 2.19(69%) 33.81(13%) 18 1.433 2.37(67%) 33.72(13%) 20 1.288 5.44(32%) 44.43(-1%) 43

ILP-1 1.524 1.64(75%) 32.99(9%) 8 1.492 6.5(0%) 38.91(-8%) 47 - - - - - - - - - - - -

ILP-2 1.516 2.79(57%) 34.46(5%) 18 1.493 3.52(46%) 35.67(1%) 21 1.459 6.92(2%) 40.21(-3%) 53 - - - - - - - -

Heur 1.536 2.48(62%) 33.77(6%) 17 - - - - - - - - - - - - - - - -

viterbi

LR 0.755 1.63 157.37 0 - - - - - - - - - - - - - - - -

LL 0.733 15.55 165.62 100 0.7 15.99 175.61 100 0.7 15.99 175.61 100 0.664 16.32 188.49 100 0.615 16.86 201.46 100

LR+LL 0.74 4.71(70%) 157.86(5%) 10 0.71 7.03(56%) 170.08(3%) 21 0.643 7.03(56%) 187.43(-7%) 20 0.643 7.03(57%) 187.43(1%) 20 0.603 8.97(47%) 203.19(-1%) 29

ILP-1 0.719 6.89(56%) 167.12(-1%) 25 0.719 6.89(57%) 167.12(5%) 25 0.687 7.51(53%) 170.2(3%) 36 0.666 10.2(38%) 177.87(6%) 53 0.611 14.58(14%) 202.07(0%) 60

ILP-2 0.715 6(61%) 167.54(-1%) 18 0.715 6(62%) 167.54(5%) 18 0.703 6.15(62%) 168.45(4%) 21 0.664 6.83(58%) 179.53(5%) 23 0.629 15.23(10%) 200.76(0%) 54

Heur 0.698 5.53(64%) 172.79(-4%) 15 0.698 5.53(65%) 172.79(2%) 15 0.698 5.53(65%) 172.79(2%) 15 - - - - - - - -

M0-2

LR 1.144 0.08 5.69 0 - - - - - - - - - - - - - - - -

LL 1.067 0.37 5.55 100 1.067 0.37 5.55 100 1.067 0.37 5.55 100 1.014 0.52 6.46 100 0.938 0.64 7.61 100

LR+LL 1.057 0.33(11%) 5.69(-3%) 66 1.057 0.33(11%) 5.69(-3%) 66 1.057 0.33(11%) 5.69(-3%) 66 0.987 0.52(0%) 6.72(-4%) 72 0.897 0.57(11%) 7.75(-2%) 77

Heur 1.073 0.26(30%) 6.42(-16%) 22 1.073 0.26(30%) 6.42(-16%) 22 1.054 0.33(11%) 6.62(-19%) 26 - - - - - - - -

M3-2

LR 1.669 0.48 23.92 0 - - - - - - - - - - - - - - - -

LL 1.555 1.05 21.84 100 1.555 1.05 21.84 100 1.555 1.05 21.84 100 1.477 1.31 23.39 100 1.384 1.63 25.81 100

LR+LL 1.548 0.71(32%) 21.74(0%) 43 1.548 0.71(32%) 21.74(0%) 43 1.548 0.71(32%) 21.74(0%) 43 1.48 0.93(29%) 23.65(-1%) 49 1.389 1.41(13%) 26.42(-2%) 56

Heur 1.625 1.44(37%) 25.7(-18%) 20 - - - - - - - - - - - - - - - -

(a) (b) (c) (d)

(e) (f) (g) (h)

(i) (j) (k) (l)

Fig. 4: (a)-(d) Leakage power versus effective periods for the four designs implemented with Enable1; (e)-(h) total power

versus effective periods for the four designs implemented with Enable1; (i)-(j) leakage and (k)-(l) total power versus effective

periods for the two designs implemented with Enable2.
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Fig. 5: Leakage versus delay curves of buffer cells with various

Vt and poly bias options available in Enable2. The delay is

measured with input slew 50ps and output load of 4× the input

capacitance of each cell. LL P16 and LL P10 consume less

leakage power than LR P4 and LR P0.

an enablement with “generic” cell library options, since only

one cell option is available for each of LL and LR.

Notice that when a cell library option is limited, as in the

case of Enable1, mixing Vt is beneficial especially for leakage

power. However, with rich cell library options (Enable2 and

Enable3), the benefit of mixing Vt is less. In Figure 6, the

red, yellow, blue curves (dots) correspond to LL, mixed-Vt,

LR designs, respectively. For relatively slower effective clock

periods (i.e., achievable by LR designs), LR always dominates

in terms of leakage and total power. For relatively faster

effective clock periods (i.e., less than the minimum achievable

clock period), mixed-Vt dominates in terms of leakage and

total power in Enable1. For Enable1 plots (Figures 6(a) and

(d)), the gap between the yellow and the red curves dots is

clearly visible. However, such a trend is not observed with

either Enable2 or Enable3. We also note that the plots in

Figure 6 do not consider placement constraints. The benefits of

LL LR designs may be obviated if placement constraints are

considered. That is to say, when spatial contiguity constraints

are considered in the placement, additional Vt swaps must be

made to achieve legal placements, and hence the LL region

will be larger than necessary.

B. Many Near-Critical Paths

Recall that mixed Vt in FDSOI requires “partitioning” the

input placement/netlist in terms of speed since LL (fast) and

LR (slow) cells must be isolated. If a design has many timing-

critical paths (which is quite common), SDP is inherently

difficult to apply to the design. In many cases, designs with

tight power and performance targets have many near-critical

timing paths due to the optimizations performed during logic

synthesis and placement. In such designs, a standard physical

implementation flow will place timing-critical cells such that

they are spread over the layout, which makes SDP more

challenging.

Figure 7(a) shows timing statistics of M3 implemented with

Enable2. The target clock period of the M3 design is 2.1ns, and

timing is measured after post-placement optimization based

on trial route. The worst setup slack is approximately -410ps,

which makes the effective clock period (i.e., the target clock

(a) (b)

(c) (d)

(e) (f)

Fig. 6: Leakage power versus effective period curves for

various M3 implementations with (a) Enable1, (b) Enable2

and (c) Enable3, along with total power versus effective period

curves for various M3 implementations with (d) Enable1, (e)

Enable2 and (f) Enable3. Effective clock period is calculated

as the target period subtracted by worst setup slack.

period subtracted by the worst setup slack) 2.5ns. In the

figure, the x-axis and y-axis show the setup slack values and

the occurrence of timing endpoints with the corresponding

setup slack. We observe a typical “slack wall”, namely, that

there is a high occurrence of timing endpoints near the worst

(leftmost) slack value. Furthermore, due to the nature of

optimizers that try to convert timing slack to minimize power,

it is likely to see such a slack distribution (slack wall) after

post-placement optimization. Designs with higher slack walls

are more difficult to improve the worst slack, since more

timing endpoints need to be improved for the clock period to

change. E.g., in Figure 7, ∼30% of timing endpoints should

be improved to obtain ∼100ps slack improvement (which is

only 4% of the effective clock period).

C. Placement Constraints

The flip well structure in FDSOI is also a root cause

of limited benefit in mixed-Vt implementation. To form

rectilinear islands, it is inevitable to make unnecessary Vt

swaps: if an LR cell instance must be swapped to LL,
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(a)

(b)

Fig. 7: Timing information of M3 implemented with Enable2.

(a) Histogram of path slack values, showing existence of

wall of slack. 30% of paths must be fixed to achieve a 4%

speed improvement. (b) Map of instance timing slacks of M3

implemented with Enable2, with legend shown in the left bar.

White and red cells are timing-critical.

LL region

Fig. 8: Mixed-Vt with region constraints in a placement. The

small rectangles are timing-critical cells. Left: timing-critical

cells are not covered by LL region, thus no speed benefit.

Right: all timing-critical cells are covered by LL region, thus

huge power increase due to the large LL region.

the neighbor cells of this target cell must be swapped as

well. Figure 8 shows example placements where region

constraints restrict the benefit of mixed-Vt implementation for

timing/power optimization. The small rectangles are timing-

critical cells. The left cartoon shows the case where timing-

critical cells are not placed in the LL region, and thus cannot

be swapped to LL for speed improvement. The right cartoon

shows the case where all timing-critical cells are placed in the

LL region to achieve speed improvement, but at the cost of

huge power increase.

Figure 7(b) shows a timing slack map of M3 with Enable2.
White and red cells can be considered as timing-critical, as

seen in the left legend bar. We observe that the benefit of

using LL, i.e., speed improvement, dramatically drops as we

give more placement constraints. Based on our experiments,

for the M3 design, 9% speed improvement is achievable

by swapping 17% of the area to LL without considering

placement constraints. However, with placement constraints,

the speed improvement drops to 1% with a similar area of LL

swaps (19%). We also have studied a variety of pre-placement

optimizations, but without success. More specifically, we

collect all the timing-critical cells up front and place them

locally, i.e., with region constraints. With the recent release of

commercial P&R tools that we use, we find that this approach

is too disruptive to conventional timing- and wirelength-

driven placement, and that it leads to several suboptimal

placement solutions with worse QoR in terms of both timing

and wirelength.

VI. CONCLUSIONS

In this work, we have studied the potential of fine-grained

mixed-Vt optimization in FDSOI. We formulate the speed

domain partitioning (SDP) problem and propose effective

heuristics that are capable of achieving significant speed

improvements. We also identify inherent challenges that limit

benefit from fine-grained mixed-Vt: (i) availability of rich

cell library options in some commercial foundry enablements;

(ii) existence of a slack wall in well-optimized designs;

and (iii) spatial contiguity constraints (arising from well

structure) in the placement. These challenges are confirmed

in implementation experiments with multiple commercial

enablements at 28nm and 22nm. Given our observations

regarding sensitivity of mixed-Vt benefits to initial designs

and library options, we offer a “decision tree” that may help

designers make implementation choices, as follows.

Fig. 9: Notional decision tree for FDSOI implementation

option choice.

Decision tree. Figure 9 shows our notional ‘decision tree”,

based on our experimental studies and observations, for

implementation option choice in FDSOI. For the input RTL,

logic synthesis results with LL, LR and mixed-Vt are needed
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to see which implementation option offers the minimum

power for the target operating frequency. If mixed-Vt is the

best option, measure the portion of LL cells (LL%) in the

synthesized netlist. If LL% > A, it would be better to use LL

option since we observe that mixed-Vt designs may not offer

better power if LL cells are dominant. For A, we empirically

recommend to use 15%. This is because LL% is likely to

increase in the presence of placement constraints (in our

experimental results, we observe a typical increase of ∼ 3×).

Further, with LL% >∼ 50%, not much power benefit is seen

compared to pure LL designs (i.e., LL% = 100).

Difficulty of fine-grained body-biasing in FDSOI. Last,

we would like to add a brief further discussion regarding

the potential for fine-grained body-biasing in FDSOI, and an

additional fundamental challenge for this optimization. We

first state the SDP problem for the body-biasing context, as

follows.

Problem formulation (“SDP-FBB”) for forward body bias.
Given an initial placed design implemented with LR cells only,

we perform Vt swapping, sizing and placement optimization

to define “LLFBB” (i.e., LL with FBB applied) regions under

timing/placement constraints. In this problem formulation, we

would only consider FBB on LL since the feasible range of

FBB voltage on LR is very limited.

Input: A placed design, synthesized and optimized with LR

cells.

Output: An optimized mixed-Vt netlist/placement, with FBB

islands.

Constraints: The target operating frequency f f bb at FBB

mode should be X% higher than fnbb (the operating frequency

at zero/no body bias (NBB)). The Δ total power ((p fbb −
pnbb)/pnbb) is no more than Y%, where p fbb (resp. pnbb) is
the total power at FBB (resp. NBB) mode. LL/FBB regions

should be rectilinear islands, and the area should be less than

Z% of the total area of the design.

The SDP-FBB problem has a fundamental, moving baseline
challenge inherent in setting the baseline for speed boost

target. This is because both the baseline fnbb and the target

f f bb change during cell-swapping optimization (i.e., LLFBB

island generation), as illustrated in Figure 10. Thus, it is

not straightforward to calculate a target frequency f f bb. The
moving baseline presents a chicken-egg situation: Once we

generate an LLFBB island to improve timing by covering

cells on the critical path, we can improve f f bb. Meanwhile,

fnbb gets improved as well since cells in the LLFBB island

automatically become LL. Eventually, an increased fnbb sets

a new target f f bb, which induces a convergence issue.

Looking forward. Finally, we believe that future work must

further elucidate the cost-benefit tradeoffs in fine-grain, mixed-

Vt (and, body biasing-based) FDSOI. This will be essential to

correct technology adoption decisions by product teams. Our

work is only a first step toward this understanding. We believe

that specific near-term research targets include identification

of important parameters that determine SDP-friendly designs;

consideration of clock distribution and on-chip variation in

signoff analyses; inclusion of useful skew into the optimization

flows; hold time considerations; and improved optimization

heuristics for the SDP implementation problem. Additionally,

Fig. 10: The “moving baseline” challenge: As f f bb is

improved, the value of fnbb changes during the process of

LLFBB island generation.

further direct investigations of the potential of fine-grained

body biasing in FDSOI are required, e.g., by developing

improved implementation flows with pre-placement netlist and

useful skew optimizations.
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José Pineda de Gyvez is a Fellow at NXP
Semiconductors where he coordinates R&D efforts
on low power design technologies. His industrial
responsibilities are positioned at the interface
between design and technology. He also holds
the professorship Resilient Nanoelectronics (part-
time) in the Department of Electrical Engineering
at the Eindhoven University of Technology, The
Netherlands. This professorship fills a gap between
industry and academia by bringing industrial
knowledge into classrooms, and open innovation

into NXP. Pineda was a Faculty member in the Department of Electrical
Engineering at Texas A&M University, USA. Dr. Pineda has been Associate
Editor for several IEEE Transactions and is often involved in program and
steering committees of international symposiums. He is also a member of the
editorial board of the Journal of Low Power Electronics. Dr. Pineda has more
than 150 publications in the fields of low power IC design, analog signal
processing, and design for manufacturability and test. He is (co)-author of
four books, and has more than 20 US granted patents.

Authorized licensed use limited to: Univ of  Calif San Diego. Downloaded on July 12,2020 at 20:25:00 UTC from IEEE Xplore.  Restrictions apply. 


